
EXPLORING FAULT PARAMETER SPACE USING
REINFORCEMENT LEARNING-BASED FAULT INJECTION

A PREPRINT

Mehrdad Moradi1, Bentley James Oakes1, Mustafa Saraoglu2,
Andrey Morozov2, Klaus Janschek2, and Joachim Denil1
1University of Antwerp and Flanders Make vzw, Belgium

{Mehrdad.Moradi, Bentley.Oakes, Joachim.Denil}@uantwerpen.be
2Technische Universität Dresden

{Mustafa.Saraoglu, Andrey.Morozov, Klaus.Janschek}@tu-dresden.de

May 1, 2020

ABSTRACT

Assessing the safety of complex Cyber-Physical Systems (CPS) is a challenge in any industry. Fault
Injection (FI) is a proven technique for safety analysis and is recommended by the automotive safety
standard ISO 26262. Traditional FI methods require a considerable amount of effort and cost as FI
is applied late in the development cycle and is driven by manual effort or random algorithms. In this
paper, we propose a Reinforcement Learning (RL) approach to explore the fault space and find crit-
ical faults. During the learning process, the RL agent injects and parameterizes faults in the system
to cause catastrophic behavior. The fault space is explored based on a reward function that evaluates
previous simulation results such that the RL technique tries to predict improved fault timing and
values. In this paper, we apply our technique on an Adaptive Cruise Controller with sensor fusion
and compare the proposed method with Monte Carlo-based fault injection. The proposed technique
is more efficient in terms of fault coverage and time to find the first critical fault.

Keywords Fault injection, reinforcement learning, safety assessment, cyber-physical systems, machine learning

1 Introduction

Cyber-physical systems (CPSs) are heterogeneous systems in which computer-based components interact with the
physical components of the system. CPSs therefore involve multiple domains such as electronics, mechanics, comput-
ing, networking, etc [1]. Each component can consist of many modules and subsystems, which raises the complexity
of the total system and increases the possibility of errors. Along with this heterogeneous complexity, CPSs must also
perform in a dynamic, possibly real-time environment where the CPS must perform intended functions safely. For this
purpose, vendors perform safety assessments on their products.

A safety assessment aims to assure that the system will perform the intended function properly in every operating
scenario. Different methods have been proposed for safety assessment. Fault Injection (FI) is a well-known method
which is based on experimenting and simulation. FI accelerates the occurrences of faults in the system in order to
evaluate system behavior [2]. In FI, the fault space is induced by the three main properties of faults: type, location
and time. The complexity of the system under the test may also lead to a system which is very sensitive to slight
perturbations, expanding the fault space exponentially [3]. Therefore, it is crucial to efficiently explore the fault space
to find and parameterize the most critical fault.

As the fault space could be extremely large (or infinite), exploring it with traditional FI is very inefficient in terms of
time and effort. We require a methods to explore this space automatically and efficiently. However, it is unclear how
to exploit domain knowledge to properly set-up these automatic searches. Our research question is about efficiently
and (semi-) automatically finding critical fault amplitudes (referring to the value of the fault) and the time at which



A PREPRINT - MAY 1, 2020

they should occur. We will strive to find an optimal fault amplitude and time pair that violate the safety specifications
for a given system.

In this paper, our approach is to use a Reinforcement Learning (RL) algorithm for fault space exploration. RL is one
of the main categories in Machine Learning (ML). The aim of using RL is to find these fault pairs by rewarding the set
of actions that lead to the collection of most rewards, namely the most critical faults [4]. The RL algorithm will learn
by dynamic interaction with the environment. The purpose of using RL in this dynamic environment is to understand
the edge-case scenarios in automated driving.

In autonomous driving, safety is easy to verify given a fully-deterministic environment for many of the state-of-the-art
systems. The challenge lies in fault detection mechanisms for the real-world, which are often the causes of fatalities
in current autonomous driving systems. Therefore, the usage of RL makes it possible to reach solutions for highly
complicated models. The entity that interacts with the environment to explore the fault space and seeks to maximize its
rewards is called the agent. Here the term environment refers to everything outside of the agent and the fault injector,
namely the system under the study.

We demonstrate our technique on an Adaptive Cruise Controller (ACC) with a sensor fusion model available from The
Mathworks Inc. In our use case, the ego vehicle uses ACC to keep a safe distance away from the lead vehicle in front
by adapting the acceleration of the ego vehicle. Our approach will inject faults in the velocity sensor which determines
the relative velocity between the ego and lead vehicles. This velocity data is input for the ACC and so directly impacts
the acceleration of the ego vehicle. Therefore, we will introduce faults into this sensor with the aim of finding critical
fault parameters which provoke a catastrophic situation.

Our core contributions are the following: a) an accurate description of our application of RL for fault space exploring
in the ACC example, b) a discussion of the reward functions employed, which guide the RL search, and c) lessons
learned about this approach, including an examination of the limitations. The proposed approach explores the fault
space and progress towards critical faults. It is therefore more efficient than random fault space exploration in terms
of fault coverage and performance. We also briefly compare our approach to a randomized Monte Carlo approach.

This paper is organized as follows. In section 2, we provide some background knowledge and related works in the
literature. Section 3 describe our motivating example, the ACC system. Our technique and methodology are explained
in section 4 and the results are demonstrated in section 5. Section 6 describes challenges and lesson learned in the
techniques, and section 7 concludes the paper and states future work.

2 Background and Related Works

In this section, we provide a brief introduction about fundamental topics discussed throughout this paper as well as
related work in the state-of-the-art.

2.1 Reinforcement Learning

Reinforcement learning (RL) is a type of Machine Learning (ML) algorithm which is used to tackle hard-to-solve con-
trol problems. It focuses on finding the best sequence of actions that generate the intended behavior. This section will
briefly describe the three components of an RL approach: environment, agent, and reward function. Each component
will then be further explained in context of our use case in section 4.3. The environment contains the model of the
system, and the agent tries solves the problem by exploring, interacting with, and learn from the environment. Each
simulation in RL is named an episode, and the agent in RL learns from the previous episode to maximize the rewards
by changing its actions for the next episode [5]. The biggest difference between RL and other ML methods is that RL
deals with a changing dynamic environment, whereas supervised and unsupervised ML deals with static data sets.

The agent interact with the environment with the observation and the action signal as shown in Fig. 1. The observation
signal indicates the state of the environment and the action signal modifies or controls the environment. The agent’s
action is based on the amplitude of the reward function. The reward function guides the agent towards exploring or
exploiting the search space in the environment [6]. The reward function must be defined in a way that directs the agent
toward the maximum reward and the intended state. The observation-action-reward cycle continues until finishing the
space exploration.

The states of the system are the observations for the agent, but how they change is unknown. This refers to the model-
free setting, where the model of the system that the agent interacts is unknown. The agent gets feedback solely through
the reward function(s). This may seem like an oversimplification, but the ability to use such a setting is the strength
of RL, as to solve for every and all possible states and actions would not be feasible. Furthermore, it may even not
be possible for models with incomplete knowledge or for systems that have a highly unpredictable nature. Inside the

2



A PREPRINT - MAY 1, 2020

Figure 1: RL agents

agent, there is a policy and an RL algorithm. The policy maps the observation signals to actions, and the RL algorithm
tries to improve the policy in a way that the agent obtains a higher reward value. There are two main algorithms for the
agent. The first type is policy-based, where the algorithm knows in which way it must explore the space. The second
type is value-based, where the algorithm must decide about the direction of exploring the space. For using agents,
there are two main approaches. The first is a model-free approach, where the agent does not need to know anything
about the system. The second approach is a model-based technique, where we provide information from the system
for the agent, so it does not need to explore the whole space.

2.2 Fault Injection

Fault injection (FI) is a testing method that stresses systems in unusual ways by injecting faults (manipulating the
values of the signals) to evaluate system behaviors and system dependability under the uncertainties and rare events
that create errors in any system. Faults can be defined as either perturbance from a normal distribution or clearly
defined disturbances. However, most faults are piece-wise, nonlinear, and unpredictable, such as saturation, bit-flips
as hardware faults, or communications faults such as disconnections in data transmissions. Note that a linear fault
model would not pose much of a great challenge because of its predictable nature. Error detection and disturbance re-
jection mechanisms can tolerate such faults straightforwardly. However, that is not the case in most systems involving
various software and hardware components. A nonlinear fault would have different erroneous values, disregarding a
linear correlation with the actual value of the signal. Therefore, the most viable verification solution is to apply an
experimental approach, i.e., to use simulation-based testing for FI [2, 3, 7].

FI has traditionally been applied to software and hardware prototypes, testing the fault-tolerance capabilities of the
designed product and validating and verifying [8]. Faults are mainly injected randomly or based on user experience,
and the fault’s parameters are selected from a uniform or predefined distribution. Faults have three main parameters as
type, location and time, and the fault type can be divided into many different categories, such as data latency, or data
change. Faults could also have a transient effect in the system, which means that it will be active in the system for a
short period, or be present from the beginning of the system’s operation until the end.

2.3 Related Works

Applying a traditional approach without any domain knowledge is not efficient for exploring the fault space of a
system [9]. A more mature approach is searching in a predetermined fault space. This approach employs the gridding
of the FI parameters to determine the critical fault values inside a predetermined parameter space. The larger the
violation is, the finer the gridding of the FI parameters until the boundary between safe state and the failure state is
determined. This approach is a more guided approach than a random search approach but requires the specific ranges
of the parameters.

Previous literature has also proposed approaches to prune the fault space by deriving equivalence classes for (possibly)
effective faults and cutting off points that beforehand can be proven to be benign [9–11]. CriticalFault [12] uses the
Architectural Vulnerability Factor (AVF) to measure the probability that a fault will affect the output of the program.
The authors in [13] perform pre-injection analysis to know the data flow in the system and how a possible fault can
propagate through components.

ML methods can also be used for optimizing FI in different application and perspectives. In [14], a ML algorithm is
utilized to reduce the computational cost for Functional De-Rating of individual flip-flops. They trained an algorithm
for one basic circuit then extend it to another sequential circuit with more complexity. In [15], the Learn-Based
Technique (LBT) is used by applying the LBT on a black-box model by interacting with the model. Eventually, a
simpler model of the model-under-test is built, and then verified with model checking approaches. The authors in [16]
propose a learning-based algorithm to find the faults that have a high impact on the safety of the vehicle. They use

3



A PREPRINT - MAY 1, 2020

Figure 2: Adaptive cruise control schematic

a Bayesian network by considering domain knowledge to predict when the vehicle will be close to an accident, and
they activate the fault at that time. [17] analyzes the impact of the soft error on virtual platforms by randomly injecting
faults based on uniform distribution. Supervised and unsupervised ML techniques are then used to eliminate non-
relevant information. That work also tries to identify the correlation between FI results and application and platform
characteristics. The authors in [18] propose an Efficient Fault Injection System for Transient Fault (ESIFT), and it
provides some statistics about the fault in the hardware under the test.

There are many studies on exploring and pruning the fault space in software-based FI, and hardware-based FI, es-
pecially on digital circuits, use cases. In addition, most of the ML techniques are developed for a homogeneous
environment and use cases. However, there are not enough studies focusing on model-based techniques which covers
broader applications and domains. Model-based FI is one way to ease the complexity of the evaluation process, as it
performs at a higher level of abstraction [19–21].

3 Motivating Example

This section will describe the motivating example for our approach which is the Adaptive Cruise Control (ACC) with
sensor fusion from a Mathworks Inc. example1.This example has a reasonable level of complexity as it contains
continuous and discrete parts with four vehicles travelling on a roadway, where vehicles are changing lanes.

In Fig. 2 we can see the model of the ego vehicle, which is the vehicle under study2. The model of the ego vehicle
consists of the ACC with sensor fusion component and the vehicle and environment.

The vehicle which is in the same lane and in front of the ego vehicle is named the lead vehicle. In Fig. 3 we can see the
ego vehicle follow the lead vehicle. The user of the ACC defines a safe distance and the ACC in the model tries to keep
the relative distance equal or larger than the safe distance. The ACC has two modes based on relative distance and safe
distance. If relative distance is larger than safe distance, the ACC increases the acceleration to reach the predefined
speed. However if the relative distance is smaller than the safe distance, the ACC will decrease acceleration to increase
the relative distance. In the following parts we describe each component of the example further, including the driving
scenario.

3.1 ACC with Sensor Fusion

The ACC with sensor fusion controls the acceleration of vehicle by gathering sensor data. In this subsystem, there
is a tracking and a sensor fusion model. This model receives the information from three sensors: radar, vision, and
velocity. The sensor fusion block combines the radar sensor and vision sensor data to increase the environmental

1https://www.mathworks.com/help/driving/examples/adaptive-cruise-control-with-sensor-fusion.
html.

2Model figure from https://www.mathworks.com/help/mpc/ug/adaptive-cruise-control-using-model-predictive-controller.
html.

4

https://www.mathworks.com/help/driving/examples/adaptive-cruise-control-with-sensor-fusion.html
https://www.mathworks.com/help/driving/examples/adaptive-cruise-control-with-sensor-fusion.html
https://www.mathworks.com/help/mpc/ug/adaptive-cruise-control- using-model-predictive-controller.html
https://www.mathworks.com/help/mpc/ug/adaptive-cruise-control- using-model-predictive-controller.html


A PREPRINT - MAY 1, 2020

Figure 3: Adaptive cruise control using sensor fusion

Figure 4: Driving scenario

perception. The ego vehicle based on this sensor data detects the other objects in the scenario, such as the lead vehicle
and the relative velocity and distance to it. These data together with predefined safe distance and vehicle’s speed
provides the necessary information for ACC. The ACC will then increase or decrease acceleration of the ego vehicle
to satisfy both the predefined velocity and safe distance, and avoid an accident between the two vehicles.

For ACC implementation there are two options in the model. One is based on Proportional-Integral–Derivative (PID)
and another is based on Model Predictive Control (MPC). For this paper we selected the ACC with the PID controller.

3.2 Vehicle and Driving Scenario

In this subsystem there are two main components, the vehicle dynamics and the actor and sensor simulation. The ve-
hicle dynamics is based on the bicycle model which is controlled by acceleration and steering signal. This component
provides position and velocity data for actors and sensor data.

Within the actor and sensor subsystem, there is a driving scenario where the road and other vehicles are defined. In the
Fig. 4 we can see the driving scenario. At first, the ego vehicle is moving with predefined speed within its lane. Then
the purple vehicle cuts into the ego vehicle lane. Then the purple vehicle becomes the lead vehicle and the distance
between the ego vehicle and lead vehicle becomes smaller than the safe distance. In a safe simulation, the ego vehicle
must decrease its velocity to avoid an accident. Then the purple vehicle returns to its lane and the ego vehicle is able
to move with its own speed. For the other vehicles in the scenario, no models are defined and they only follow a
pre-defined path and speed in each moment.

3.3 Fault Possibilities

Based on the driving scenario and the position of the ego vehicle, the ACC receives data from the radar and vision
sensor, and the vehicle dynamics provides a velocity value for ACC. Then the ACC uses these information to control
the acceleration of the ego vehicle. If the measured data is not correct, it affects the vehicle safety. In this scenario, the
ego vehicle may crash into the back of the lead vehicle entering its lane.

The most common fault type is a sensor fault [7]. The accuracy of a sensor reading is easily affected by a large number
of environmental factors. A typical factor is the process noise, which is usually defined as a disturbance addition to
the real value.

In this paper we check the safety of the vehicle when there is a fault in the velocity data. Therefore, we have fixed the
location of the fault for the sake of simplicity and focus on exploring fault space for finding the critical fault amplitude

5



A PREPRINT - MAY 1, 2020

Figure 5: Connecting reinforcement learning, fault injection, and the environment

and fault injection times. A small example of a fault activation is defined as the following:

vego

{
vego, t < ft
vego = fv, t ≥ ft

(1)

where t denotes the real-time and ft denotes the fault activation time. In this simple example, the fault activation sets
the velocity of the ego vehicle vego to the defined fault value fv as the time t passes ft.

In the next section, we will demonstrate a RL-based technique for exploring the fault space in the determined use case
regarding the ACC safety specification.

4 Technique

In this section we describe the proposed technique step-by-step. The focus of the technique is on using this method to
explore the fault space and derive the critical fault parameters that can cause an accident.

4.1 Technique Framework

The proposed technique is based on model-based FI and uses an RL agent as a fault injector. For using RL in fault
space exploration, we change the model-under-test to the setup in Fig. 5. All the models of the vehicles and the
scenario become an environment for the new setup. The proposed approach defines the fault injector as the agent, and
the actions are fault properties such as fault injection time and amplitude in a specific signal. By starting the training,
the fault injector starts with initial values for the fault, and it eventually optimizes the value in each new episode.

4.2 Relevant Properties in the Use Case

In the ACC with a sensor fusion model, the requirement is to satisfy the user-defined speed while keeping the relative
distance larger than a specific value between the ego vehicle and the lead vehicle. These two parameters guarantee
the safety of the vehicle. Another critical aspect of reasoning is the different modes of the system or any fault-tolerant
mechanism. For example, in our use case, we know the time and the condition that the system switches modes (or goes
into safety mode). Also, the boundary conditions of the system and developer assumptions in system development are
critical information as well as the testing scenario. In our use case, the test engineer must know how the ego vehicle
and other vehicles behave in the simulation. Based on our knowledge about our use case, we consider a stuck-to-value
fault in the velocity sensor to be the fault of interest. Then, we need to adjust and configure our RL agent.

4.3 Applying Reinforcement Learning

We must use the RL in a way that it exploits fault space for the highest long-term reward. In our case, as we explore
the fault parameter space, we need to explore all fault value pairs. Therefore, a special emphasis on exploration vs.
exploitation is required for the execution of the policy. At time t this action At can be denoted as:

At = argmax
F∗

Rt(F
∗) (2)

6



A PREPRINT - MAY 1, 2020

Figure 6: Determination of the agent action function as described in (1)

Where arg max denotes the value of F ∗ at which the received award Rt is maximized. In the use case, we add an RL
agent, reward function, stopping criteria, and observation signal to the original model. The RL agent will then work
as a fault injector to provoke the system to create an accident.

4.3.1 Environment

In our use case, all the models-under-test are our environment. In the environment, there are many signals and pa-
rameters. The tester does have to know about the model structure to provide some beneficial signals to the RL agent
because the observation signals and action signals are crucial for the agent. Observation signals must represent the
system state, especially its safety. In our use case, the observation signals are acceleration and relative distance as
they determine the ego vehicle safety and position. The action signals as shown in Fig. 6, are the fault’s parameters of
amplitude and injection time.

4.3.2 Policy

An appropriate policy algorithm is critical for the use case. There are many algorithms based on the following param-
eters:

• Continuous or discrete action space
• Continuous or discrete observation spaces
• Policy-based or value-based algorithm or both
• Model-free or model-based method or both

For the policy in our use case, we use the Deep Deterministic Policy Gradient (DDPG) algorithm. It is a model-free
and actor-critic reinforcement learning method [22] chosen because of the following reasons:

• Our use case is a hybrid and non-linear model. Therefore, the action space and observation space is infinite.
• While we provide some knowledge about the system, we want to be less dependent on user knowledge about

the model-under-test.
• We do not know the best direction of exploring the action space. Hence, the agent should compute an optimal

policy that maximizes the long-term reward.

We combine the benefits of direct policy mapping and value-based mapping in a third method called actor-critic
method that guides the agent efficiently toward high reward states. In the actor-critic agent, the actor is the policy,
and the critic is a function that improves the actor in each episode. In both critic and actor function, we use a Neural
Network (NN) inspired by [22]. Our critic network consists of four fully-connected layers, and between each layer,
we use the Rectified Linear Unit (ReLU) function. Our actor consists of two fully connected layers and a hyperbolic
tangent layer between them. As with other ML techniques, there is no one right approach for settling on a NN
structure. A lot of it comes down to starting with a structure that has already worked for the type of problem to solve
and tweaking it from there.

We also provide the agent some information about the use case, so our agent is a combination of model-free and
model-based approach. With this custom agent, we have the benefits of two methods together.

4.3.3 Reward Function

The reward function is made concerning the system’s requirements. The reward function is defined in a negative way;
namely, in our use case, the agent is rewarded for actions that lead to an accident. Therefore, the agent is encouraged to
commit actions that yield unsafe states, and by analyzing the action signals, we are able to determine the most critical
faults. For this purpose we make the reward function Rt at time t as:

Rt = ((max(0,min(200, xr))
−1)10)2 + 0.1vego − t (3)

7



A PREPRINT - MAY 1, 2020

Figure 7: The training result

Our reward function is based on three parameters as follows:

• time (t): By advancing time, the reward value will decrease. This motivates the RL agent to inject a fault as
soon as possible.

• Velocity of ego vehicle (vego): The reward must increase when the velocity is higher. This counters the speed
limit that the user defines and motivates the ego vehicle to go faster and create an accident.

• Relative distance (xr): The relative distance identifies the safety severity of the situation. When the ego
vehicle crashes or the relative distance is less than the predefined margin, the reward value increases. This
motivates the vehicle to violate the safe distance.

The amplitude of each factor must be set in a way to increase the reward value when the ego vehicle acts in an unsafe
way. For example, if we decrease the impact of the relative distance, the agent is less likely will try to violate the safe
distance. On the other hand, if we increase its impact too much, our results suffer as we are decreasing the impact of
other factors like velocity.

In our experiments, when neglecting the velocity term, the agent finds less critical faults in the fault space. It is because
the velocity itself motivates the vehicle toward the beginning of an unsafe state while the relative distance will be most
useful when the vehicle is closer to the unsafe situation.

In Eq. (3), mathematical operations and functions such as square function, multiplication, and inverse function mag-
nify the relative distance impact compared to the other parameters as described. Choosing those operations are based
on the domain knowledge, our expertise and some trial and error simulation.

In this configuration, the RL agent tweaks the NN after each episode to increase the reward. Hence, it explores the
fault space at a fixed location (velocity sensor) to find both critical fault amplitude and injection time. To explore a
broader fault space for the system, we must change the injection location in the model and perform the aforementioned
steps. For example, we could change the injection location (action signal of RL) to be the radar sensor. Then in the
highest rewarded episode, we obtain the final parameters for use in our fault testing.

5 Results

This section will describe our obtained results and their verification, as well as present a brief comparison of this
technique to a Monte Carlo approach.

5.1 Results and their Verification

Fig. 7 shows the result of the training. The peaks in the diagram show the maximum reward reached over the different
episodes. The reward function was tested in a non-faulty model where there is no accident. If the episode reward is
greater than the reward in the non-faulty model, we conclude that the ego vehicle violated the safe distance or that an
accident was caused.

8



A PREPRINT - MAY 1, 2020

To select the faults, we examine the peaks in Fig. 7. The different amplitudes of the peaks indicates that we have
different unsafe episode with varying severity. In one of the unsafe episode (one peak), we choose the value that
appears most often in that episode for both fault amplitude and fault injection time. This fault is then injected into the
model, and the simulation is run. The visualization of the result with three dimensional (3D) animation or by plotting
the simulation traces allows us to validate whether the fault produces unsafe vehicle behavior or not.

(a) The normal simulation

(b) The faulty simulation

Figure 8: Simulation results with and without a fault

In Fig. 8, we can see the relative distance in the red line and the safe distance in the blue line. In the fault-free
simulation in Fig. 8a, the relative distance is always larger than the safe distance. On the other hand, with a faulty
simulation in Fig. 8b, we see that between 12 seconds and 20 seconds, the relative velocity is lower than the safe
distance. It indicates that the ego vehicle violates safety requirements.

5.2 Comparison

We also briefly compared our method with Monte-Carlo fault injection (MCFI) in Table 1, which is based on randomly
choosing fault parameters. The data is averaged between two experiments for MCFI. In MCFI, a uniform distribution
is used for selecting fault amplitude and time of injection. Our performance metric was the number of simulations
that can find a critical scenario. Hence, we do not consider the personal computer’s (PC) configuration. We ran MCFI
twice, and the average of the minimum number of simulations to obtain the first critical fault was fifteen, while our
approach reached a critical fault after three simulations. Our method also found nineteen critical faults in a hundred
simulations while MCFI finds three. Thus we have promising results that our approach is more efficient than a Monte
Carlo approach.

Table 1: Fault space exploration result comparison

Approach Num. Of Sims.
for First Critical
Fault

Total Num. of
Critical Faults

MCFI 15 3
RL 3 19

6 Discussion

In this section we will describe challenges encountered during this research and some lessons learned.

6.1 Challenges

These challenges mainly revolve around two principal questions essential to ML and Artificial Intelligence (AI): a) how
to ensure that the technique will provide a good solution?, and b) how to improve the policy and handle imperfections?

9



A PREPRINT - MAY 1, 2020

The first challenge is that there is no straight forward way to define a proper RL structure. Each of the agent structure
(for example hidden layers), agent parameters, training parameters, observation signal, reward function, action signal,
and simulation parameters all affect the training result. In addition, as RL is a black-box (like all ML techniques) for
the users, we can only validate the technique and the results by simulating of the obtained critical faults.

A second challenge is that training process requires time and effort, especially in the cycle of redesigning, training,
and testing. For each iteration, the deep learning algorithm has to perform a lot of exploration. Hence, finding a proper
RL configuration requires manual work and trial-and-error. As the require time for this cycle is highly dependant on
user expertize, we skipped to include this parameter in Table 1.

Related open questions are how to map the domain knowledge to the problem, and use the domain knowledge to direct
the exploration not to lose test coverage but reduce the computation time. The domain knowledge must guide us to a
proper definition of a reward function and observation signals. As well, the principles are unclear as to how to extend
the same RL structure and function to other use cases. We cannot use one RL configuration in different applications
or even different scenarios. The RL results are dependent on scenario related parameters and its setting.

For example, the reward function has a critical rule for finding the most destructive scenario. If the reward function is
not appropriately defined, the RL algorithm will not explore the fault space in the right way. If the RL can then not
find the solution, we cannot extrapolate that there is no solution to the problem.

Another challenge can be not observing convergence in the trace (c.f. Fig. 7) with an evolving training process, while
having a convergence trace is mandatory in many applications of RL. Convergence means that we have reached an
optimal parameter. In fault space exploration, a converged curve would provide us one number for each parameter
instead of multiple, and it will not continue to explore other areas. Therefore in this paper, we are not interested in a
converged curve. Instead, to avoid getting stuck at a local maximum, the RL approach should continuously explore
the other possibilities by trying different fault value/time pairs.

6.2 Lessons Learned

In the proposed technique, the reward function plays a key role. It formalizes the goal of the agent. The method to
make the agent do the described task or achieve a goal depends on how the reward function is defined for it. With
experimenting in the use case, we learned how to shape the reward function effectively. Any discontinuity in the
reward function makes fault space exploration very hard and time-consuming for the agent. It must also be defined in
a way that it will gradually increase when the agent is close to its goal and it must avoid to get stuck to local maximum.

This definition must take into account domain knowledge, so the test engineer must be familiar with the model-under-
test and how it operates in each test scenario. Hence, we propose to check for proper operation of the reward function
before running the learning process by running the simulation without any RL agent and examining the output of the
reward function.

The RL algorithm in the policy also is essential. There are many algorithms based on the nature of the problem
that we want to solve. Algorithms have been categorized based on continuity/discontinuity, off-policy/on-policy,
deterministic/stochastic, etc. Therefore, we note that choosing a proper algorithm has a significant impact on the
result.

Another critical factor is the observation signals chosen, as they must represent the crucial states of the system. Hence,
choosing too many signals will not be profitable for the agent. Using domain knowledge and understanding the model-
under-test will help to determine the highly effective signals.

The agent setting also is important. For example, we can determine ranges for observations and action signals, which
has a significant impact on finding faults in the space. Typically users do not define any limits for them, and the agent
must explore infinite numbers, decreasing the fault coverage. Instead, by considering the ranges of real-world faults,
the user may be able to determine the limits more efficiently.

The last lesson learned is related to interpreting the training result. For extracting the critical fault from training result,
we use the values that appears must often as the result of training does not consist of fixed value for fault parameters.
In all of the critical faults we observe that the fault value is frequently repeated.

7 Conclusion and Future Works

This work explores the use of reinforcement learning (RL) for optimizing fault injection (FI) in terms of performance
and fault coverage. On our use case, we converted the problem to a RL algorithm where we defined a reward function
and the observation signals using knowledge about the model-under-test. The RL agent can then move toward the

10



A PREPRINT - MAY 1, 2020

intended behaviour instead of exploring the fault space randomly, and this guided-search provides us a sequence of
fault injection parameters which could lead to hazardous situations in autonomous driving.

This approach can be applied to a gray-box systems or black-box systems, both in hardware-based FI and software-
based FI, because we do not need to know about the system in detail. The proposed approach interacts with the system
with some defined signals. Therefore, the high-level knowledge about the system under the test is sufficient.

This work also demonstrates the effectiveness of intelligent fault space exploration mechanisms in contrast to the
random parametrization of faults. We have explored how a guided search with a well-defined reward function can
prove more useful than Monte Carlo-based FI techniques.

For our future work, we plan to generalize the methodology to apply it to a variety of different problems. For this
purpose we will work on modelling the domain knowledge in the process and using a mature RL agent for fault
space exploration. In this paper we have used a deterministic policy for the RL agent while using a stochastic policy
will be more beneficial as it will explore fault space based on the probability of all next actions. It also provides an
interpretable result through an examination of the final trained network.

Acknowledgment

This work was partly funded by Flanders Make vzw, the strategic research centre for the Flemish manufacturing
industry; and by the Flanders Make project aSET (grant no. HBC.2017.0389) of the Flanders Innovation and En-
trepreneurship agency (VLAIO). The authors thank Moharram Challenger for his useful suggestions.

References

[1] E. A. Lee, “Cyber physical systems: Design challenges,” in 2008 11th IEEE International Symposium on Object
and Component-Oriented Real-Time Distributed Computing (ISORC). IEEE, 2008, pp. 363–369.

[2] J. Arlat et al., “Fault injection for dependability validation: a methodology and some applications,” IEEE Trans-
actions on Software Engineering, vol. 16, no. 2, pp. 166–182, Feb 1990.

[3] A. Benso and P. Prinetto, Fault injection techniques and tools for embedded systems reliability evaluation.
Springer Science & Business Media, 2003, vol. 23.

[4] A. S. Polydoros and L. Nalpantidis, “Survey of model-based reinforcement learning: Applications on robotics,”
Journal of Intelligent & Robotic Systems, vol. 86, no. 2, pp. 153–173, 2017.

[5] L. Busoniu, R. Babuska, B. De Schutter, and D. Ernst, Reinforcement learning and dynamic programming using
function approximators. CRC press, 2017.

[6] N. Heess, D. TB, S. Sriram, J. Lemmon, J. Merel, G. Wayne, Y. Tassa, T. Erez, Z. Wang, S. Eslami et al.,
“Emergence of locomotion behaviours in rich environments,” arXiv preprint arXiv:1707.02286, 2017.

[7] M. Saraoğlu, A. Morozov, M. T. Söylemez, and K. Janschek, “Errorsim: A tool for error propagation analysis
of Simulink models,” in Computer Safety, Reliability, and Security, S. Tonetta, E. Schoitsch, and F. Bitsch, Eds.
Cham: Springer International Publishing, 2017, pp. 245–254.

[8] M.-C. Hsueh, T. K. Tsai, and R. K. Iyer, “Fault injection techniques and tools,” Computer, vol. 30, no. 4, pp.
75–82, 1997.

[9] S. K. S. Hari, S. V. Adve, H. Naeimi, and P. Ramachandran, “Relyzer: Exploiting application-level fault equiva-
lence to analyze application resiliency to transient faults,” ACM SIGARCH Computer Architecture News, vol. 40,
no. 1, pp. 123–134, 2012.

[10] X. Meng, Q. Tan, Z. Shao, N. Zhang, J. Xu, and . Zhang, “Optimization methods for the fault injection tool
seinjector,” in 2018 International Conference on Information and Computer Technologies (ICICT), March 2018,
pp. 31–35.

[11] C. Dietrich, A. Schmider, O. Pusz, G. P. Vayá, and D. Lohmann, “Cross-layer fault-space pruning for hardware-
assisted fault injection,” in 2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC), June 2018, pp.
1–6.

[12] X. Xu and M.-L. Li, “Understanding soft error propagation using efficient vulnerability-driven fault injection,”
in IEEE/IFIP International Conference on Dependable Systems and Networks (DSN 2012). IEEE, 2012, pp.
1–12.

11



A PREPRINT - MAY 1, 2020

[13] R. Barbosa, J. Vinter, P. Folkesson, and J. Karlsson, “Assembly-level pre-injection analysis for improving fault
injection efficiency,” in Dependable Computing - EDCC 5, M. Dal Cin, M. Kaâniche, and A. Pataricza, Eds.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2005, pp. 246–262.

[14] T. Lange, A. Balakrishnan, M. Glorieux, D. Alexandrescu, and L. Sterpone, “On the estimation of complex
circuits functional failure rate by machine learning techniques,” in 2019 49th Annual IEEE/IFIP International
Conference on Dependable Systems and Networks – Supplemental Volume (DSN-S), June 2019, pp. 35–41.

[15] H. Khosrowjerdi, K. Meinke, and A. Rasmusson, “Virtualized-fault injection testing: A machine learning ap-
proach,” in 2018 IEEE 11th International Conference on Software Testing, Verification and Validation (ICST).
IEEE, 2018, pp. 297–308.

[16] S. Jha, S. Banerjee, T. Tsai, S. K. Hari, M. B. Sullivan, Z. T. Kalbarczyk, S. W. Keckler, and R. K. Iyer, “Ml-based
fault injection for autonomous vehicles: A case for Bayesian fault injection,” in 2019 49th Annual IEEE/IFIP
International Conference on Dependable Systems and Networks (DSN), June 2019, pp. 112–124.

[17] F. R. da Rosa, R. Garibotti, L. Ost, and R. Reis, “Using machine learning techniques to evaluate multicore soft
error reliability,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 66, no. 6, pp. 2151–2164,
June 2019.

[18] N. Tian, D. Saab, and J. A. Abraham, “Esift: Efficient system for error injection,” in 2018 IEEE 24th Interna-
tional Symposium on On-Line Testing And Robust System Design (IOLTS), July 2018, pp. 201–206.

[19] R. Svenningsson, J. Vinter, H. Eriksson, and M. Törngren, “Modifi: a model-implemented fault injection tool,”
in International Conference on Computer Safety, Reliability, and Security. Springer, 2010, pp. 210–222.

[20] M. Moradi, B. Van Acker, K. Vanherpen, and J. Denil, “Model-implemented hybrid fault injection for Simulink
(tool demonstrations),” in Cyber Physical Systems. Model-Based Design, R. Chamberlain, W. Taha, and
M. Törngren, Eds. Cham: Springer International Publishing, 2019, pp. 71–90.

[21] M. Moradi, C. Gomes, B. J. Oakes, and J. Denil, “Optimizing fault injection in FMI co-simulation through
sensitivity partitioning,” in Proceedings of the 2019 Summer Simulation Conference, ser. SummerSim ’19. San
Diego, CA, USA: Society for Computer Simulation International, 2019.

[22] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D. Silver, and D. Wierstra, “Continuous control
with deep reinforcement learning,” arXiv preprint arXiv:1509.02971, 2015.

12


	Introduction
	Background and Related Works
	Reinforcement Learning
	Fault Injection
	Related Works

	Motivating Example
	ACC with Sensor Fusion
	Vehicle and Driving Scenario
	Fault Possibilities

	Technique
	Technique Framework
	Relevant Properties in the Use Case
	Applying Reinforcement Learning
	Environment
	Policy
	Reward Function


	Results
	Results and their Verification
	Comparison

	Discussion
	Challenges
	Lessons Learned

	Conclusion and Future Works

